Part Number Hot Search : 
HD647 L7143SRC 1029G 74F240SJ UPD16 KSC2258A 658C3C2 GB4060D
Product Description
Full Text Search
 

To Download MCF523X Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? freescale semiconductor, inc., 2004. all rights reserved. ? preliminary freescale semiconductor hardware specification mcf5235ec rev. 1.3, 10/2004 technical data table of contents the mcf523 x is a family of highly-integrated 32-bit microcontrollers based on the v2 coldfire microarchitecture. featuri ng a 16 or 32 channel etpu, 64 kbytes of internal sram, a 2-bank sdram controller, four 32-bit timer s with dedicated dma, a 4 channel dma controller, up to 2 can modules, 3 uarts and a queued spi, the mcf523 x family has been designed for general purpose industrial control applications. it is also a high-performance upgrade for users of the mc68332. this document provides an overview of the mcf523 x microcontroller family, as well as detailed descripti ons of the mechanical and electrical characteristi cs of the devices. the mcf523 x family is based on the version 2 coldfire reduced instruction set computing (risc) microarchitecture operating at a core frequency of up to 150 mhz and bus frequency up to 75 mhz. 1 overview this 32-bit device's on-chip modules include: 1 overview ......................................................... 1 2 signal descriptions.......................................... 9 3 modes of operation....................................... 14 4 design recommendations ............................ 17 5 mechanicals/pinouts and part numbers ....... 25 6 preliminary electrical characteristics............ 34 7 documentation .............................................. 58 MCF523X integrated microprocessor hardware specification 32-bit embedded controller division
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary overview freescale semiconductor 2 ? v2 coldfire core with enhanced multiply-a ccumulate unit (emac) providing 144 dhrystone 2.1 mips @ 150 mhz ? etpu with 16 or 32 channels, 6 kbytes of code memory and 1.5 kbytes of data memory with nexus class 1 debug support ? 64 kbytes of internal sram ? external bus speed of one half the cpu opera ting frequencey (75 mhz bus @ 150 mhz core) ? 10/100 mbps bus-masteri ng ethernet controller ? 8 kbytes of configurable instruction/data cache ? three universal asynchronous re ceiver/transmitters (uarts) ? controller area network 2.0b (flexcan) module ? optional second flexcan module mu ltiplexed with the third uart ? inter-integrated circuit (i 2 c?) bus controller ? queued serial peripheral interface (qspi) module ? hardware cryptography accelerator (optional) ? random number generator ? des/3des/aes block cipher engine ? md5/sha-1/hmac accelerator ? four channel 32-bit direct me mory access (dma) controller ? four channel 32-bit input capture/output compare timers with optional dma support ? four channel 16-bit periodi c interrupt timers (pits) ? programmable software watchdog timer ? interrupt controller capable of handling up to 126 interrupt sources ? clock module with integrated phase locked loop (pll) ? external bus interface module including a 2-bank synchronous dram controller ? 32-bit non-multiplexed bus with up to 8 chip select signals that support paged mode flash memories 1.1 mcf523 x family configurations table 1. mcf523 x family configurations module 5232 5233 5234 5235 coldfire v2 core with emac (enhanced multiply-accumulate unit) xxxx enhanced time processor unit with memory (etpu) 16-ch 6k 32-ch 6k 16-ch 6k 32-ch 6k system clock up to 150 mhz performance (dhrystone/2.1 mips) up to 144
overview MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 3 1.2 block diagram the superset device in the mcf523 x family comes in a 256 mold array process ball grid array (mapbga) package. figure 1 shows a top-level block diagram of the mcf5235, the superset device. instruction/data cache 8 kbytes static ram (sram) 64 kbytes interrupt controllers (intc) 2 2 2 2 edge port module (eport) x x x x external interface module (eim) x x x x 4-channel direct-memory access (dma) xxxx sdram controller x x x x fast ethernet controller (fec) ? ? x x cryptography - security module for data packets processing ??? x watchdog timer (wdt) x x x x four periodic interrupt timers (pit) x x x x 32-bit dma timers 4 4 4 4 qspi x x x x uart(s) 3333 i 2 c xxxx flexcan 2.0b - controller-area network communication module 1212 general purpose i/o module (gpio) xxxx jtag - ieee 1149.1 test access port xxxx package 160 qfp 196 mapbga 256 mapbga 256 mapbga 256 mapbga table 1. mcf523 x family configurations (continued) module 5232 5233 5234 5235
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary overview freescale semiconductor 4 figure 1. mcf5235 block diagram 64 kbytes sram (8kx16)x4 flexcan etpu eim ethernet v2 coldfire cpu intc0 watchdog pit0 jtag tap cache (1kx32)x2 pit1 pit2 pit3 4 ch dma uart 0 uart 1 i 2 c qspi dtim 0 dtim 1 dtim 2 dtim 3 timer padi ? pin muxing pll clkgen uart 2 8 kbytes edge port sdramc chip ebi selects (to/from padi) (to/from etpu cantx canrx fast controller (fec) fec dt n in dt n out u n rxd untxd i2c_sda i2c_scl sdramc qspi u n rts u n cts ports cim (to/from padi) nexus (gpio) d[31:0] a[23:0] r/ w cs[3:0] ta tsiz [1:0] tea bs [3:0] div emac dreq [2:0] intc1 arbiter (to/from sram backdoor) (to/from arbiter backdoor) skha rnga mdha (to/from padi) cryptography modules (x2) dack [2:0] bdm (to/from intc) mux padi) jtag_en
overview MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 5 1.3 features the following section gives a brief ove rview of this family?s feature set. for more detailed information see the mcf5235 reference manual (mcf5235rm). 1.3.1 feature overview ? version 2 coldfire variable -length risc processor core ? static operation ? 32-bit address and data path on-chip ? processor core runs at twice the bus frequency ? sixteen general-purpose 32-bit data and address registers ? implements the coldfire instruction set archit ecture, isa_a+, with extensions to support the user stack pointer register, and 4 new instructions for improved bit processing ? enhanced multiply-accumulate (emac) unit wi th four 48-bit accumulators to support 32-bit signal processing algorithms ? illegal instruction decode that allows for 68k emulation support ? enhanced time processor unit (etpu) ? event triggered vliw pr ocessor timer subsystem ? 32 channels ? 24-bit timer resolution ? 6 kbyte of code memory and 1.5 kbyte of data memory ? variable number of paramete rs allocatable per channel ? double match/capture channels ? angle mode support ? dma and interrupt request support ? nexus class 1 debug support ? system debug support ? integrated debug supports both coldfire debug and nexus class 1 features on a single port with cross triggering ope rations for ease of use ? unified programming model including bot h coldfire and nexus debug registers ? real time trace for determ ining dynamic execution path ? background debug mode (bdm) for in-circuit debugging ? real time debug support, with tw o user-visible hardware breakpoi nt registers (pc and address with optional data) that can be confi gured into a 1- or 2-level trigger ? on-chip memories ? 8-kbyte cache, configurable as instruct ion-only, data-only, or split i-/d-cache ? 64-kbyte dual-ported sram on cpu internal bus, accessible by core and non-core bus
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary overview freescale semiconductor 6 masters (e.g., dma, fec) ? fast ethernet controller (fec) ? 10 baset capability, half duplex or full duplex ? 100 baset capability, half duplex or full duplex ? on-chip transmit and receive fifos ? built-in dedicated dma controller ? memory-based flexible descriptor rings ? media independent interface (mii ) to external transceiver (phy) ? flexcan modules (up to 2) ? full implementation of the can pr otocol specification version 2.0b ? standard data and remote frames (up to 109 bits long) ? extended data and remote frames (up to 127 bits long) ? 0?8 bytes data length ? programmable bit ra te up to 1 mbit/sec ? flexible message buffers (mbs), totalling up to 16 message buffers of 0?8 bytes data length each, configurable as rx or tx, all suppor ting standard and extended messages ? unused mb space can be used as general purpose ram space ? listen only mode capability ? content-related addressing ? three programmable mask register s: global (for mbs 0-13), special for mb14 and special for mb15 ? programmable transmit-first scheme: lowest id or lowest buffer number ? ?time stamp? based on 16-bit free-running timer ? global network time, synchr onized by a specific message ? three universal asynchronous receiver transmitters (uarts) ? 16-bit divider for clock generation ? interrupt control logic ? maskable interrupts ? dma support ? data formats can be 5, 6, 7 or 8 bits with even, odd or no parity ? up to 2 stop bits in 1/16 increments ? error-detection capabilities ? modem support includes request-to-send (u n rts ) and clear-to-send (u n cts ) lines ? transmit and receive fifo buffers ?i 2 c module ? interchip bus interface for eeproms, lcd controllers, a/d converters, and keypads
overview MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 7 ? fully compatible with industry-standard i 2 c bus ? master or slave modes support multiple masters ? automatic interrupt genera tion with programmable level ? queued serial peripheral interface (qspi) ? full-duplex, three-wire synchronous transfers ? up to four chip selects available ? master mode operation only ? programmable master bit rates ? up to 16 pre-programmed transfers ? four 32-bit dma timers ? 13-ns resolution at 75 mhz ? programmable sources for clock input, including an external clock option ? programmable prescaler ? input-capture capability with progr ammable trigger edge on input pin ? output-compare with programma ble mode for the output pin ? free run and restart modes ? maskable interrupts on input cap ture or reference-compare ? dma trigger capability on input capture or reference-compare ? four periodic interr upt timers (pits) ? 16-bit counter ? selectable as free running or count down ? software watchdog timer ? 16-bit counter ? low power mode support ? phase locked loop (pll) ? crystal or external oscillator reference ? 8 to 25 mhz reference frequency for normal pll mode ? 24 to 75 mhz oscillator refe rence frequency for 2:1 mode ? separate clock output pin ? interrupt controllers (x2) ? support for up to 110 interrupt sources organized as follows: ? 103 fully-programmable interrupt sources ? 7 fixed-level external interrupt sources ? unique vector number fo r each interrupt source ? ability to mask any individual interrupt sour ce or all interrupt s ources (global mask-all)
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary overview freescale semiconductor 8 ? support for hardware and software interrupt acknowledge (iack) cycles ? combinatorial path to provide wake-up from lo w power modes ? dma controller ? four fully programmable channels ? dual-address and single-address transfer support with 8-, 16- a nd 32-bit data capability along with support for 16-byte (4 32-bit) burst transfers ? source/destination address pointers that can increment or remain constant ? 24-bit byte transfer counter per channel ? auto-alignment transfers supporte d for efficient block movement ? bursting and cycle steal support ? software-programmable connections between the 12 dma requesters in the uarts (3), 32-bit timers (4) plus extern al logic (4) the four dma channels and the etpu (1) ? external bus interface ? glueless connections to external memory devices (e.g., sram, flash, rom, etc.) ? sdram controller supports 8-, 16- , and 32-bit wide memory devices ? support for n-1-1-1 burst fetc hes from page mode flash ? glueless interface to sram devices with or without byte strobe inputs ? programmable wait state generator ? 32-bit bidirectional data bus ? 24-bit address bus ? up to eight chip selects available ? byte/write enables (byte strobes) ? ability to boot from external memo ries that are 8, 16, or 32 bits wide ? chip integration module (cim) ? system configuration during reset ? selects one of four clock modes ? sets boot device and its data port width ? configures output pad drive strength ? unique part identification num ber and part revision number ?reset ? separate reset in and reset out signals ? six sources of reset: powe r-on reset (por), external, software, watchdog, pll loss of clock, pll loss of lock ? status flag indication of source of last reset ? general purpose i/o interface ? up to 142 bits of general purpose i/o
signal descriptions MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 9 ? bit manipulation supporte d via set/clear functions ? unused peripheral pins may be used as extra gpio ? jtag support for system level board testing 2 signal descriptions this section describes signals that connect off chip, including a tabl e of signal properties. for a more detailed discussion of the mcf523 x signals, consult the mcf5235 reference manual (mcf5235rm). 2.1 signal properties table 2 lists all of the signals grouped by function. the ?dir? column is the direction for the primary function of the pin. refer to section 5, ?mechanicals/pinouts and part numbers ,? for package diagrams. note in this table and throug hout this document a singl e signal within a group is designated without square brackets (i.e., a24), wh ile designations for multiple signals within a group use br ackets (i.e., a[23:21]) and is meant to include all signals within the two bracketed numbers when these numbers are separated by a colon. note the primary functionality of a pin is not necessarily its de fault functionality. pins that are muxed with gpio will default to their gpio functionality. table 2. MCF523X signal information and muxing signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga reset reset ? ? ? i 83 n13 t15 t15 t15 rstout ? ? ? o 82 p13 t14 t14 t14 clock extal ? ? ? i 86 m14 p16 p16 p16 xtal ? ? ? o 85 n14 r16 r16 r16 clkout ? ? ? o 89 k14 m16 m16 m16 mode selection clkmod[1:0] ? ? ? i 19,20 g5, h5 j3, j2 j3, j2 j3, j2 rcon ? ? ? i 79 k10 p13 p13 p13 external memory interface and ports
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary signal descriptions freescale semiconductor 10 a[23:21] paddr[7:5] cs [6:4] ? o 126, 125, 124 b11, c11, d11 b14, c14, a15 b14, c14, a15 b14, c14, a15 a[20:0] ? ? ? o 123:115, 112:106, 102:98 a12, b12, c12, a13, b13, b14, c13, c14, d12, d13, d14, e11, e12, e13, e14, f12, f13, f14, g11, g12, g13 b15, b16, c15, c16, d16, d15, d14, e16, e15, e14, e13, f15, f14, f13, g15, g14, g13, h16, h15, h14, h13 b15, b16, c15, c16, d16, d15, d14, e16, e15, e14, e13, f15, f14, f13, g15, g14, g13, h16, h15, h14, h13 b15, b16, c15, c16, d16, d15, d14, e16, e15, e14, e13, f15, f14, f13, g15, g14, g13, h16, h15, h14, h13 d[31:16] ? ? ? o 21:24, 26:30, 33:39 g1, g2, h1, h2, h3, h4, j1, j2, j3, j4, k1, k2, k3, k4, l1, l2 k4, k3, k2, k1, l4, l3, l2, l1, m3, m2, m1, n2, n1, p2, p1, r1 k4, k3, k2, k1, l4, l3, l2, l1, m3, m2, m1, n2, n1, p2, p1, r1 k4, k3, k2, k1, l4, l3, l2, l1, m3, m2, m1, n2, n1, p2, p1, r1 d[15:8] pdatah[7:0] ? ? o 42:49, m1, n1, m2, n2, p2, l3, m3, n3, r2, t2, n3, p3, r3, t3, n4, p4, r2, t2, n3, p3, r3, t3, n4, p4, r2, t2, n3, p3, r3, t3, n4, p4, d[7:0] pdatal[7:0] ? ? o 50:52, 56:60 p3, m4, n4, p4, l5, m5, n5, p5 r4, t4, p5, r5, n6, p6, r6, n7 r4, t4, p5, r5, n6, p6, r6, n7 r4, t4, p5, r5, n6, p6, r6, n7 bs [3:0] pbs[7:4] cas [3:0] ? o 143:140 b6, c6, d7, c7 c9, b9, a9, a10 c9, b9, a9, a10 c9, b9, a9, a10 oe pbusctl7 ? ? o 63 n6 t7 t7 t7 ta pbusctl6 ? ? i 97 h11 k14 k14 k14 tea pbusctl5 dreq1 ?i ? j14 k13 k13 k13 r/w pbusctl4 ? ? o 96 j13 l16 l16 l16 tsiz1 pbusctl3 dack1 ? o ?p6n8n8n8 tsiz0 pbusctl2 dack0 ?o ?p7p8p8p8 ts pbusctl1 dack2 ?o ? h13 k16 k16 k16 tip pbusctl0 dreq0 ? o ? h12 k15 k15 k15 chip selects cs [7:4] pcs[7:4] ? ? o ?b9, a10, c10, a11 c12, a13, c13, a14 c12, a13, c13, a14 c12, a13, c13, a14 cs [3:2] pcs[3:2] sd_cs[1:0] ? o 134,133 a9, c9 b12, d12 b12, d12 b12, d12 cs1 pcs1 ? ? o 130 b10 b13 b13 b13 cs0 ? ? ? o 129 d10 d13 d13 d13 table 2. MCF523X signal information and muxing (continued) signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga
signal descriptions MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 11 sdram controller sd_we psdram5 ? ? o 93 k13 l13 l13 l13 sd_scas psdram4 ? ? o 92 k12 m15 m15 m15 sd_sras psdram3 ? ? o 91 k11 m14 m14 m14 sd_cke psdram2 ? ? o 139 e8 c10 c10 c10 sd_cs [1:0] psdram[1:0] ? ? o ? l12, l13 n15, m13 n15, m13 n15, m13 external interrupts port irq [7:3] pirq[7:3] ? ? i irq7=64 irq4=65 n7, m7, l7, p8, n8 r8, t8, n9, p9, r9 r8, t8, n9, p9, r9 r8, t8, n9, p9, r9 irq2 pirq2 dreq2 ? i ?m8t9t9t9 irq1 pirq1 ? ? i 66 l8 n10 n10 n10 etpu tpuch31 ? ecol ? ? ?f3 ?f3 tpuch30 ? ecrs ? ? ?f4 ?f4 tpuch29 ? erxclk ? ? ?e3 ?e3 tpuch28 ? erxdv ? ? ?e4 ?e4 tpuch[27:24] ? erxd[3:0] ? ? ? d3, d4, c3, c4 ? d3, d4, c3, c4 tpuch23 ? erxer ? ? ?d5 ?d5 tpuch22 ? etxclk ? ? ?c5 ?c5 tpuch21 ? etxen ? ? ?d6 ?d6 tpuch20 ? etxer ? ? ?c6 ?c6 tpuch[19:16] ? etxd[3:0] ? ? ? b6,b5, a5, b7 ? b6,b5, a5, b7 tpuch[15:0] ? ? ? 11, 10, 7:2, 159:154, 152, 151 e2, e1, d1 d2, d3, c1, c2, b1, b2, a2, c3, b3, a3, a4, c4, br f2, e1, e2, d1, d2, c1, c2, b1, b2, a2, b3, a3, b4, a4, a6, a7 f2, e1, e2, d1, d2, c1, c2, b1, b2, a2, b3, a3, b4, a4, a6, a7 f2, e1, e2, d1, d2, c1, c2, b1, b2, a2, b3, a3, b4, a4, a6, a7 tcrclk petpu2 ? ? 12 e3 f1 f1 f1 utpuodis petpu1 ? ? ? h10 j13 j13 j13 ltpuodis petpu0 ? ? ? g10 j14 j14 j14 fec emdio pfeci2c2 i2c_sda u2rxd i/o ? ? ?c7c7 table 2. MCF523X signal information and muxing (continued) signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary signal descriptions freescale semiconductor 12 emdc pfeci2c3 i2c_scl u2txd o ? ? ?d7d7 ecol ? ? ? i ? ? ?f3f3 ecrs ? ? ? i ? ? ?f4f4 erxclk ? ? ? i ? ? ?e3e3 erxdv ? ? ? i ? ? ?e4e4 erxd[3:0] ? ? ? i ? ? ?d3, d4, c3, c4 d3, d4, c3, c4 erxer ? ? ? o ? ? ?d5d5 etxclk ? ? ? i ? ? ?c5c5 etxen ? ? ? i ? ? ?d6d6 etxer ? ? ? o ? ? ?c6c6 etxd[3:0] ? ? ? o ? ? ? b6, b5, a5, b7 b6, b5, a5, b7 feature control etpu/ethenb ? ? ? i ????m4 i 2 c i2c_sda pfeci2c1 can0rx ? i/o ? j12 l15 l15 l15 i2c_scl pfeci2c0 can0tx ? i/o ? j11 l14 l14 l14 dma dack [2:0] and dreq [2:0] do not have a dedicated bond pads. please refer to the following pins for muxing: ts and dt2out for dack2 , tsiz1and dt1out for dack1 , tsiz0 and dt0out for dack0 , irq2 and dt2in for dreq2 , tea and dt1in for dreq1 , and tip and dt0in for dreq0 . ? ? ? ? ? qspi qspi_cs1 pqspi4 sd_cke ? o ?b7b10b10b10 qspi_cs0 pqspi3 ? ? o 147 a6 d9 d9 d9 qspi_clk pqspi2 i2c_scl ? o 148 c5 b8 b8 b8 qspi_din pqspi1 i2c_sda ? i 149 b5 c8 c8 c8 qspi_dout pqspi0 ? ? o 150 a5 d8 d8 d8 uarts u2txd puarth1 can1tx ? o ?a8d11d11d11 u2rxd puarth0 can1rx ? i ?a7d10d10d10 u1cts puartl7 u2cts ? i ?b8c11c11c11 table 2. MCF523X signal information and muxing (continued) signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga
signal descriptions MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 13 u1rts puartl6 u2rts ? o ?c8b11b11b11 u1txd puartl5 can0tx ? o 135 d9 a12 a12 a12 u1rxd puartl4 can0rx ? i 136 d8 a11 a11 a11 u0cts puartl3 ? ? i ? f3 g1g1g1 u0rts puartl2 ? ? o ?g3h3h3h3 u0txd puartl1 ? ? o 14 f1 h2 h2 h2 u0rxd puartl0 ? ? i 13 f2 g2 g2 g2 dma timers dt3in ptimer7 u2cts qspi_cs2 i ? h14 j15 j15 j15 dt3out ptimer6 u2rts qspi_cs3 o ? g14 j16 j16 j16 dt2in ptimer5 dreq2 dt2out i ?m9p10p10p10 dt2out ptimer4 dack2 ? o ?l9r10r10r10 dt1in ptimer3 dreq1 dt1out i ?l6p7p7p7 dt1out ptimer2 dack1 ? o ?m6r7r7r7 dt0in ptimer1 dreq0 ? i ? e4 g4g4g4 dt0out ptimer0 dack0 ? o ? f4 g3g3g3 bdm/jtag 2 dsclk ? trst ? i 70 n9 n11 n11 n11 pstclk ? tclk ? o 68 p9 t10 t10 t10 bkpt ? tms ? i 71 p10 p11 p11 p11 dsi ? tdi ? i 73 m10 t11 t11 t11 dso ? tdo ? o 72 n10 r11 r11 r11 jtag_en ? ? ? i 78 k9 n13 n13 n13 ddata[3:0] ? ? ? o ?m12, n12, p12, l11 n14, p14, t13, r13 n14, p14, t13, r13 n14, p14, t13, r13 pst[3:0] ? ? ? o 77:74 m11, n11, p11, l10 t12, r12, p12, n12 t12, r12, p12, n12 t12, r12, p12, n12 table 2. MCF523X signal information and muxing (continued) signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary modes of operation freescale semiconductor 14 3 modes of operation 3.1 chip configuration mode?device operating options ? chip operating mode: ? master mode ? boot device/size: ? external device boot ? 32-bit ? 16-bit (default) test test ? ? ? i 18 f5 j4 j4 j4 pll_test ? ? ? i ?r14r14r14 power supplies vddpll ? ? ? i 87 m13 p15 vsspll ? ? ? i 84 l14 r15 ovdd ? ? ? i 1, 9, 17, 32, 41, 55, 62, 69, 81, 90, 95, 105, 114, 128, 132, 138, 146 e5, e7, e10, f7, f9, g6, g8, h7, h8, h9, j6, j8, j10, k5, k6, k8 e6:11, f5, f7:10, f12, g5, g6, g11, g12, h5, h6, h11, h12, j5, j6, j11, j12, k5, k6, k11, k12, l5, l7:10, l12, m6:m11 vss ? ? ? i 8, 16, 25, 31, 40, 54, 61, 67, 80, 88, 94, 104, 113, 127, 131, 137, 145, 153, 160 a1, a14, e6, e9, f6, f8, f10, g7, g9, h6, j5, j7, j9, k7, p1, p14 a1, a16, e5, e12, f6, f11, f16, g7:10, h7: 10, j1, j7:10, k7:10, l6, l11, m5, m12, n16, t1, t6, t16 vdd ? ? ? i 15, 53, 103, 144 d6, f11, g4, l4 a8, g16, h1, t5 notes: 1 refers to pin?s primary function. all pins which are configur able for gpio have a pullup enabled in gpio mode with the exception of pbusctl[7], pbus ctl[4:0], paddr, pbs, psdram. 2 if jtag_en is asserted, these pins default to alternate 1 (j tag) functionality. the gpio module is not responsible for assigning these pins. table 2. MCF523X signal information and muxing (continued) signal name gpio alternate 1 alternate 2 dir. 1 mcf5232 160 qfp mcf5232 196 mapbga mcf5233 256 mapbga mcf5234 256 mapbga mcf5235 256 mapbga
modes of operation MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 15 ?8-bit ? output pad strength: ? partial drive strength (default) ? full drive strength ? clock mode: ? normal pll with external crystal ? normal pll with external clock ? 1:1 pll mode ? external oscillator mode (no pll) ? chip select configuration: ? paddr[7:5] configured as chip select(s) and/or address line(s) ? paddr[7:5] configured as a23-a21 (default) ? paddr configured as cs6 , paddr[6:5] as a22-a21 ? paddr[7:6] configured as cs [6:5], paddr5 as a21 ? paddr[7:5] configured as cs [6:4] 3.1.1 chip configuration pins table 3. configuration pin descriptions pin chip configuration function pin state/meaning comments rcon chip configuration enable 1 disabled 0 enabled active low: if asserted, then all configuration pins must be driven appropriately for desired operation d16 select chip operating mode 1master 0 reserved d20, d19 select external boot device data port size 00,11 external (32-bit) 10 external (8-bit) 01 external (16-bit) value read defaults to 32-bit d21 select output pad drive strength 1full 0 partial clkmod1, clkmod0 select clock mode 00 external clock mode (no pll) 01 1:1 pll mode 10 normal pll with external clock reference 11 normal pll with crystal clock reference vddpll must be supplied if a pll mode is selected
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary modes of operation freescale semiconductor 16 3.2 low power modes the following features are available to su pport applications which require low power. ? four modes of operation: ?run ?wait ? doze ?stop ? ability to shut down most peripherals independently. ? ability to shut down the external clkout pin. there are four modes of operation: run, wait, doze, and stop. the system enters a low power mode when the user programs the low power bits (lpmd) in the lpcr (low power control register) in the cim before the cpu core executes a stop instruction. this idles the cpu with no cycles active. the lpmd bits indicate to the system and clock controll er to power down and stop the clocks appropriately. during stop mode, the system clock is stopped low. a wakeup event is required to exit a low power m ode and return back to run mode. wakeup events consist of any of the followi ng conditions. see the following sections for more details. 1. any type of reset. 2. assertion of the bkpt pin to request entry into debug mode. 3. debug request bit in the bdm control regi ster to request entry into debug mode. 4. any valid interrupt request. 3.2.1 run mode run mode is the normal system opera ting mode. current consumption in th is mode is related directly to the frequency chosen for the system clock. d25, d24 select chip select / address line 00 paddr[7:5] configured as a23-a21 (default) 10 paddr7 configured as cs6 , paddr[6:5] as a22-a21 01 paddr[7:6] configured as cs [6:5], paddr5 as a21 11 paddr[7:5] configured as cs [6:4] jtag_en selects bdm or jtag mode 0bdm mode 1 jtag mode table 3. configuration pin descriptions (continued) pin chip configuration function pin state/meaning comments
design recommendations MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 17 3.2.2 wait mode wait mode is intended to be used to stop only the cpu core and memory clocks until a wakeup event is detected. in this mode, peripherals may be programme d to continue ope rating and can generate interrupts, which cause the cpu core to exit from wait mode. 3.2.3 doze mode doze mode affects the cpu core in the same manner as wait mode, but with a different code on the cim lpmd bits, which are monitore d by the peripherals. each periphe ral defines individual operational characteristics in doze mode. periphe rals which continue to run and have the capability of producing interrupts may cause the cpu to exit the doze mode and return to the run m ode. peripherals which are stopped will restart operation on exit from do ze mode as defined for each peripheral. 3.2.4 stop mode stop mode affects the cpu core in the same manner as the wait and doze modes, but with a different code on the ccm lpmd bits. in this mode, all clocks to the system are stopped and the peripherals cease operation. stop mode must be entered in a controlled manne r to ensure that any current operation is properly terminated. when exiting stop mode, most peripherals retain their pre-stop st atus and resume operation. 3.2.5 peripheral shut down most peripherals may be disa bled by software in order to cease in ternal clock generati on and remain in a static state. each peripheral has its own specific disabling sequence (r efer to each peripheral description for further details). a peri pheral may be disabled at anytime and will remain disabled during any low power mode of operation. 4 design recommendations 4.1 layout ? use a 4-layer printed circuit board with the v dd and gnd pins connected directly to the power and ground planes for the mcf523 x . ? see application note an1259 system design and layout techniques for noise reduction in processor-based systems. ? match the pc layout trace wi dth and routing to match trace length to operating frequency and board impedance. add terminat ion (series or therein) to the traces to dampen reflections. increase the pcb impedance (if possible) keepi ng the trace lengths balanced and short. then do cross-talk analysis to separate traces with significant parallelis m or are otherwise "noisy". use 6 mils trace and separation. clocks get extr a separation and more precise balancing.
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary design recommendations freescale semiconductor 18 4.2 power supply ?33 f, .1 f and .01 f across each power supply 4.3 decoupling ? place the decoupling caps as close to the pins as possible, but they can be outside the footprint of the package. ?.1 f and .01 f at each supply input 4.4 buffering ? use bus buffers on all data/address lines for al l off-board accesses and for all on-board accesses when excessive loading is expected. see section 6, ?preliminary electrical characteristics .? 4.5 pull-up recommendations ? use external pull-up resistors on unused inputs. see pin table. 4.6 clocking recommendations ? use a multi-layer board wi th a separate ground plane. ? place the crystal and all other associated components as close to the extal and xtal (oscillator pins) as possible. ? do not run a high frequency trace around crystal circuit. ? ensure that the ground for the bypass capaci tors is connected to a solid ground trace. ? tie the ground trace to the ground pin nearest extal and xtal. this prevents large loop currents in the vicinity of the crystal. ? tie the ground pin to the most solid ground in the system. ? do not connect the trace that connects the oscill ator and the ground plane to any other circuit element. this tends to ma ke the oscillator unstable. ? tie xtal to ground when an external oscillator is clocking the device. 4.7 interface recommendations 4.7.1 sdram controller 4.7.1.1 sdram controller signals in synchronous mode table 4 shows the behavior of sdram signals in synchronous mode.
design recommendations MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 19 4.7.1.2 address multiplexing table 5 shows the generic address mul tiplexing scheme for sdram confi gurations. all po ssible address connection configurations can be derived from this table. table 4. synchronous dram signal connections signal description sd_sras synchronous row address strobe. indicates a va lid sdram row address is present and can be latched by the sdram. sd_sras should be connected to the corresponding sdram sd_sras . do not confuse sd_sras with the dram controller?s sd_cs [1:0], which should not be interfaced to the sdram sd_sras signals. sd_scas synchronous column address strobe. indicates a valid column address is present and can be latched by the sdram. sd_scas should be connected to the corresponding signal labeled sd_scas on the sdram. dramw dram read/write. asserted for write operations and negated for read operations. sd_cs [1:0] row address strobe. select each memory block of sdrams connected to the mcf523 x . one sd_cs signal selects one sdram block and connects to the corresponding cs signals. sd_cke synchronous dram clock enable. connected directly to the cke (clock enable) signal of sdrams. enables and disables the clock internal to sdram. when cke is low, memory can enter a power-down mode where operations are su spended or they can enter self-refresh mode. sd_cke functionality is controlled by dcr[coc]. for designs using external multiplexing, setting coc allows sd_cke to prov ide command-bit functionality. bs [3:0] column address strobe. for synchronous operation, bs [3:0] function as byte enables to the sdrams. they connect to the dqm signals (or mask qualifiers) of the sdrams. clkout bus clock output. connects to the clk input of sdrams. table 5. generic address multiplexing scheme address pin row address column address notes related to port sizes 17 17 0 8-bit port only 16 16 1 8- and 16-bit ports only 15 15 2 14 14 3 13 13 4 12 12 5 11 11 6 10 10 7 99 8 17 17 16 32-bit port only 18 18 17 16-bit port only or 32-bit port with only 8 column address lines 19 19 18 16-bit port only when at least 9 column address lines are used 20 20 19
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary design recommendations freescale semiconductor 20 the following tables provide a more comprehensive, step-by-step way to determine the correct address line connections for interfacing the mcf523 x to sdram. to use the tables , find the one that corresponds to the number of column address lines on the sdram and to the port si ze as seen by the mcf523 x , which is not necessarily the sdram port size. for exampl e, if two 1m x 16-bit sdrams together form a 2m x 32-bit memory, the port size is 32 bits. most sdrams likely have fewer address lines than are shown in the tables, so follow onl y the connections shown until all sdram address lines are connected. 21 21 20 22 22 21 23 23 22 24 24 23 25 25 24 table 6. mcf523 x to sdram interface (8-bit port, 9-column address lines) MCF523X pins a17 a16 a15 a14 a13 a12 a11 a10 a9 a18 a19 a2 0a21a22a23a24a25a26a27a28a29a30a31 row 17 16 15 14 13 12 11 10 9 18 19 20 21 22 23 24 25 26 27 28 29 30 31 column 012345678 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 table 7. mcf523 x to sdram interface (8-bit port,10-column address lines) MCF523X pins a17 a16 a15 a14 a13 a12 a11 a10 a9 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 1716151413121110 9 19202122232425262728293031 column 01234567818 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 table 8. mcf523 x to sdram interface (8-bit port,11-column address lines) MCF523X pins a17 a16 a15 a14 a13 a12 a11 a10 a9 a19 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 1716151413121110 9 192122232425262728293031 column 0123456781820 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 table 5. generic address multiplexing scheme (continued) address pin row address column address notes related to port sizes
design recommendations MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 21 table 9. mcf523 x to sdram interface (8-bit port,12-column address lines) MCF523X pins a17 a16 a15 a14 a13 a12 a11 a10 a9 a19 a21 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 1716151413121110 9 1921232425262728293031 column 012345678182022 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 table 10. mcf523 x to sdram interface (8-bit port,13-column address lines) MCF523X pins a17 a16 a15 a14 a13 a12 a11 a10 a9 a19 a21 a23 a25 a26 a27 a28 a29 a30 a31 row 1716151413121110 9 19212325262728293031 column 01234567818202224 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 table 11. mcf523 x to sdram interface (16-bit port, 8-column address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 16 15 14 13 12 11 10 9 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 column 12345678 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22 table 12. mcf523 x to sdram interface (16-bit port, 9-column address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 16 15 14 13 12 11 10 9 18 19 20 21 22 23 24 25 26 27 28 29 30 31 column 1234567817 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 table 13. mcf523 x to sdram interface (16-bit port, 10-column address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a18 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 16151413121110 9 18202122232425262728293031 column 123456781719 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary design recommendations freescale semiconductor 22 table 14. mcf523 x to sdram interface (16-bit port, 11-column address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a18 a20 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 16 15 14 13 12 11 10 9 18 20 22 23 24 25 26 27 28 29 30 31 column 1 2 3 4 5 6 7 8 17 19 21 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 table 15. mcf523 x to sdram interface (16-bit port, 12-column address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a18 a20 a22 a24 a25 a26 a27 a28 a29 a30 a31 row 16 15 14 13 12 11 10 9 18 20 22 24 25 26 27 28 29 30 31 column 1234567817192123 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 table 16. mcf523 x to sdram interface (16-bit port, 13-column-address lines) MCF523X pins a16 a15 a14 a13 a12 a11 a10 a9 a18 a20 a22 a24 a26 a27 a28 a29 a30 a31 row 16151413121110 9 18202224262728293031 column 1 2 3 4 5 6 7 8 17 19 21 23 25 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 table 17. mcf523 x to sdram interface (32-bit port, 8-column address lines) MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a18 a19 a20 a2 1a22a23a24a25a26a27a28a29a30a31 row 151413121110 9 171819202122232425262728293031 column 234567816 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 table 18. mcf523 x to sdram interface (32-bit port, 9-column address lines) MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 151413121110 9 1719202122232425262728293031 column 23456781618 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20
design recommendations MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 23 4.7.1.3 sdram interfacing example the tables in the previous section can be used to configure the interface in the following example. to interface one 2m 32-bit 4 bank sdram component (8 columns) to the mcf523 x , the connections would be as shown in table 22 . 4.7.2 ethernet phy transceiver connection the fec supports both an mii interfac e for 10/100 mbps ethernet and a se ven-wire serial interface for 10 mbps ethernet. the interface mode is select ed by r_cntrl[mii_mode]. in mii mode, the 802.3 standard defines and the fec module s upports 18 signals. these are shown in table 23 . table 19. mcf523 x to sdram interface (32-bit port, 10-column address lines) MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a19 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 151413121110 9 17192122232425262728293031 column 2345678161820 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 table 20. mcf523 x to sdram interface (32-bit port, 11-column address lines) MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a19 a21 a23 a24 a25 a26 a27 a28 a29 a30 a31 row 15 14 13 12 11 10 9 17 19 21 23 24 25 26 27 28 29 30 31 column 234567816182022 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 table 21. mcf523 x to sdram interface (32-bit port, 12-column address lines) MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a19 a21 a23 a25 a26 a27 a28 a29 a30 a31 row 151413121110 9 1719212325262728293031 column 2 3 4 5 6 7 8 1618202224 sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 table 22. sdram hardware connections sdram pins a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 = cmd ba0 ba1 MCF523X pins a15 a14 a13 a12 a11 a10 a9 a17 a18 a19 a20 a21 a22
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary design recommendations freescale semiconductor 24 the serial mode interface operates in what is generally referred to as amd mode. the mcf523 x configuration for seven-wire seri al mode connections to the exte rnal transceiver are shown in table 24 . refer to the m523 x evb evaluation board user?s manual for an example of how to connect an external phy. schematics for this board are accessible at the mcf523 5 site by navigating to: http://www.freescale.com . table 23. mii mode signal description mcf523 x pin transmit clock etxclk transmit enable etxen transmit data etxd[3:0] transmit error etxer collision ecol carrier sense ecrs receive clock erxclk receive enable erxdv receive data erxd[3:0] receive error erxer management channel clock emdc management channel serial data emdio table 24. seven-wire mode configuration signal description mcf523 x pin transmit clock etxclk transmit enable etxen transmit data etxd[0] collision ecol receive clock erxclk receive enable erxdv receive data erxd[0] unused, configure as pb14 erxer unused input, tie to ground ecrs unused, configure as pb[13:11] erxd[3:1] unused output, ignore etxer unused, configure as pb[10:8] etxd[3:1] unused, configure as pb15 emdc input after reset, connect to ground emdio
mechanicals/pi nouts and part numbers MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 25 4.7.2.1 flexcan the flexcan module interface to the can bus is co mposed of 2 pins: cantx and canrx, which are the serial transmitted data and the serial received data. the use of an external can transceiver to interface to the can bus is generally required. the transceiver is capable of driv ing the large current needed for the can bus and has current protection, against a defective can bus or defective stations. 4.7.3 bdm use the bdm interface as shown in the m523xevb ev aluation board user?s manual. the schematics for this board are accessible at the mcf523 x site by navigating from: http://www.freescale.com following the 32-bit embedded processors, 68k/coldfire, mcf5xxx, mcf523 x and m523xevb links. 5 mechanicals/pinouts and part numbers this section contains drawings s howing the pinout and the packaging a nd mechanical char acteristics of the mcf523 x devices. see table 2 for a list the signal names and pin locations for each device.
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary mechanicals/pinouts and part numbers freescale semiconductor 26 5.1 pinout?196 mapbga figure 2 shows a pinout of the mcf5232cvmxxx package. figure 2. mcf5232cvmxxx pinout (196 mapbga) 1234567891011121314 a vss tpuch6 tpuch3 tpuch2 qspi_ dout qspi_cs0 u2rxd u2txd cs3 cs6 cs4 a20 a17 vss a b tpuch8 tpuch7 tpuch4 tpuch0 qspi_ din bs3 qspi_cs1 u1cts cs7 cs1 a23 a19 a16 a15 b c tpuch10 tpuch9 tpuch5 tpuch1 qspi_clk bs2 bs0 u1rts cs2 cs5 a22 a18 a14 a13 c d tpuch13 tpuch12 tpuch11 nc nc vdd bs1 u1rxd/ can0rx u1txd/ can0tx cs0 a21 a12 a11 a10 d e tpuch14 tpuch15 tcrclk dt0in ovdd vss ovdd sd_cke vss ovdd a9 a8 a7 a6 e f u0txd u0rxd u0cts dt0out test vss ovdd vss ovdd vss vdd a5 a4 a3 f g d31 d30 u0rts vdd clkmod1 ovdd vss ovdd vss ltpu odis a2 a1 a0 dt3out g h d29 d28 d27 d26 clkmod0 vss ovdd ovdd ovdd utpu odis ta tip ts dt3in h j d25 d24 d23 d22 vss ovdd vss ovdd vss ovdd i2c_scl i2c_sda r/w tea j k d21 d20 d19 d18 ovdd ovdd vss ovdd jtag_en rcon sd_sras sd_scas sd_we clkout k l d17 d16 d10 vdd d3 dt1in irq5 irq1 dt2out pst0 ddata0 sd_cs1 sd_cs0 vsspll l m d15 d13 d9 d6 d2 dt1out irq6 irq2 dt2in tdi/dsi pst3 ddata3 vddpll extal m n d14 d12 d8 d5 d1 oe irq7 irq3 trst / dsclk tdo/dso pst2 ddata2 reset xtal n p vss d11 d7 d4 d0 tsiz1 tsiz0 irq4 tclk/ pstclk tms/ bkpt pst1 ddata1 rstout vss p 1234567891011121314
mechanicals/pi nouts and part numbers MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 27 5.2 package dimensions?196 mapbga figure 3 shows mcf5232cvmxxx package dimensions. figure 3. 196 mapbga package dimensions (case no. 1128a-01) x 0.20 laser mark for pin 1 identification in this area e 13x d e m s a1 a2 a 0.15 z 0.30 z z rotated 90 clockwise detail k 5 view m-m e 13x s m x 0.30 y z 0.10 z 3 b 196x metalized mark for pin 1 identification in this area 14 13 12 11 5 4 3 2 b c d e f g h j k l 4 notes: 1. dimensions are in millimeters. 2. interpret dimensions and tolerances per asme y14.5m, 1994. 3. dimension b is measured at the maximum solder ball diameter, parallel to datum plane z. 4. datum z (seating plane) is defined by the spherical crowns of the solder balls. 5. parallelism measurement shall exclude any effect of mark on top surface of package. dim min max millimeters a 1.32 1.75 a1 0.27 0.47 a2 1.18 ref b 0.35 0.65 d 15.00 bsc e 15.00 bsc e 1.00 bsc s 0.50 bsc y k m n p a 1 6 10 9
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary mechanicals/pinouts and part numbers freescale semiconductor 28 5.2.1 pinout?256 mapbga figure 4 through figure 6 show pinouts of the mcf5233cvmxxx, mcf5234cvmxxx, and mcf5235cvmxxx packages. figure 4. mcf5233cvmxxx pinout (256 mapbga) 1 2 3 4 5 6 7 8 9 10111213 14 15 16 a vss tpuch6 tpuch4 tpuch2 tpuch17 tpuch1 tpuch0 vdd bs1 bs0 u1rxd/ can0rx u1txd/ can0tx cs6 cs4 a21 vss a b tpuch8 tpuch7 tpuch5 tpuch3 tpuch18 tpuch19 tpuch16 qspi_ clk bs2 qspi_ cs1 u1rts cs3 cs1 a23 a20 a19 b c tpuch10 tpuch9 tpuch25 tpuch24 tpuch22 tpuch20 i2c_sda/ u2rxd qspi_ din bs3 sd_cke u1cts cs7 cs5 a22 a18 a17 c d tpuch12 tpuch11 tpuch27 tpuch26 tpuch23 tpuch21 i2c_scl/ u2txd qspi_ dout qspi_ cs0 u2rxd/ can1rx u2txd/ can1tx cs2 cs0 a14 a15 a16 d e tpuch14 tpuch13 tpuch29 tpuch28 vss ovdd ovdd ovdd ovdd ovdd ovdd vss a10 a11 a12 a13 e f tcrclk tpuch15 tpuch31 tpuch30 ovdd vss ovdd ovdd ovdd ovdd vss ovdd a7 a8 a9 vss f g u0cts u0rxd dt0out dt0in ovdd ovdd vss vss vss vss ovdd ovdd a4 a5 a6 vdd g h vdd u0txd u0rts nc ovdd ovdd vss vss vss vss ovdd ovdd a0 a1 a2 a3 h j vss clk mod0 clk mod1 test ovdd ovdd vss vss vss vss ovdd ovdd utpu odis ltpu odis dt3in dt3out j k d28 d29 d30 d31 ovdd ovdd vss vss vss vss ovdd ovdd tea ta tip ts k l d24 d25 d26 d27 ovdd vss ovdd ovdd ovdd ovdd vss ovdd sd_we i2c_scl/ can0tx i2c_sda/ can0rx r/w l m d21 d22 d23 nc vss ovdd ovdd ovdd ovdd ovdd ovdd vss sd_ cs0 sd_ sras sd_ scas clkout m n d19 d20 d13 d9 nc d3 d0 tsiz1 irq5 irq1 trst / dsclk pst0 jtag_ en ddata3 sd_cs1 vss n p d17 d18 d12 d8 d5 d2 dt1in tsiz0 irq4 dt2in tms/ bkpt pst1 rcon ddata2 vddpll extal p r d16 d15 d11 d7 d4 d1 dt1out irq7 irq3 dt2out tdo/ dso pst2 ddata0 pll_ test vsspll xtal r t vss d14 d10 d6 vdd vss oe irq6 irq2 tclk/ pstclk tdi/dsi pst3 ddata1 rstout reset vss t 1 2 3 4 5 6 7 8 9 10111213 14 15 16
mechanicals/pi nouts and part numbers MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 29 figure 5. mcf5234cvmxxx pinout (256 mapbga) 1 2 3 4 5 6 7 8 9 10111213 14 15 16 a vss tpuch6 tpuch4 tpuch2 etxd1 tpuch1 tpuch0 vdd bs1 bs0 u1rxd/ can0rx u1txd/ can0tx cs6 cs4 a21 vss a b tpuch8 tpuch7 tpuch5 tpuch3 etxd2 etxd3 etxd0 qspi_ clk bs2 qspi_ cs1 u1rts cs3 cs1 a23 a20 a19 b c tpuch10 tpuch9 erxd1 erxd0 etxclk etxer emdio qspi_ din bs3 sd_cke u1cts cs7 cs5 a22 a18 a17 c d tpuch12 tpuch11 erxd3 erxd2 erxer etxen emdc qspi_ dout qspi_ cs0 u2rxd u2txd cs2 cs0 a14 a15 a16 d e tpuch14 tpuch13 erxclk erxdv vss ovdd ovdd ovdd ovdd ovdd ovdd vss a10 a11 a12 a13 e f tcrclk tpuch15 ecol ecrs ovdd vss ovdd ovdd ovdd ovdd vss ovdd a7 a8 a9 vss f g u0cts u0rxd dt0out dt0in ovdd ovdd vss vss vss vss ovdd ovdd a4 a5 a6 vdd g h vdd u0txd u0rts nc ovdd ovdd vss vss vss vss ovdd ovdd a0 a1 a2 a3 h j vss clk mod0 clk mod1 test ovdd ovdd vss vss vss vss ovdd ovdd utpu odis ltpu odis dt3in dt3out j k d28 d29 d30 d31 ovdd ovdd vss vss vss vss ovdd ovdd tea ta tip ts k l d24 d25 d26 d27 ovdd vss ovdd ovdd ovdd ovdd vss ovdd sd_we i2c_scl/ can0tx i2c_sda/ can0rx r/w l m d21 d22 d23 nc vss ovdd ovdd ovdd ovdd ovdd ovdd vss sd_cs0 sd_ sras sd_ scas clkout m n d19 d20 d13 d9 nc d3 d0 tsiz1 irq5 irq1 trst / dsclk pst0 jtag_ en ddata3 sd_cs1 vss n p d17 d18 d12 d8 d5 d2 dt1in tsiz0 irq4 dt2in tms/ bkpt pst1 rcon ddata2 vddpll extal p r d16 d15 d11 d7 d4 d1 dt1out irq7 irq3 dt2out tdo/ dso pst2 ddata0 pll_ test vsspll xtal r t vss d14 d10 d6 vdd vss oe irq6 irq2 tclk/ pstclk tdi/dsi pst3 ddata1 rst out reset vss t 1 2 3 4 5 6 7 8 9 10111213 14 15 16
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary mechanicals/pinouts and part numbers freescale semiconductor 30 figure 6. mcf5235cvmxxx pinout (256 mapbga) 12345678910111213141516 a vss tpuch6 tpuch4 tpuch2 tpuch17/ etxd1 tpuch1 tpuch0 vdd bs1 bs0 u1rxd/ can0rx u1txd/ can0tx cs6 cs4 a21 vss a b tpuch8 tpuch7 tpuch5 tpuch3 tpuch18/ etxd2 tpuch19/ etxd3 tpuch16/ etxd0 qspi_ clk bs2 qspi_ cs1 u1rts cs3 cs1 a23 a20 a19 b c tpuch10 tpuch9 tpuch25/ erxd1 tpuch24/ erxd0 tpuch22/ etxclk tpuch20/ etxer i2c_sda/ u2rxd/ emdio qspi_ din bs3 sd_cke u1cts cs7 cs5 a22 a18 a17 c d tpuch12 tpuch11 tpuch27/ erxd3 tpuch26/ erxd2 tpuch23/ erxer tpuch21/ etxen i2c_scl/ u2txd/ emdc qspi_ dout qspi_ cs0 u2rxd/ can1rx u2txd/ can1tx cs2 cs0 a14 a15 a16 d e tpuch14 tpuch13 tpuch29/ erxclk tpuch2/ erxdv vss ovdd ovdd ovdd ovdd ovdd ovdd vss a10 a11 a12 a13 e f tcrclk tpuch15 tpuch31/ ecol tpuch30/ ecrs ovdd vss ovdd ovdd ovdd ovdd vss ovdd a7 a8 a9 vss f g u0cts u0rxd dt0out dt0in ovdd ovdd vss vss vss vss ovdd ovdd a4 a5 a6 vdd g h vdd u0txd u0rts nc ovdd ovdd vss vss vss vss ovdd ovdd a0 a1 a2 a3 h j vss clk mod0 clk mod1 test ovdd ovdd vss vss vss vss ovdd ovdd utpu odis ltpu odis dt3in dt3out j k d28 d29 d30 d31 ovdd ovdd vss vss vss vss ovdd ovdd tea ta tip ts k l d24 d25 d26 d27 ovdd vss ovdd ovdd ovdd ovdd vss ovdd sd_we i2c_scl/ can0tx i2c_sda/ can0rx r/w l m d21 d22 d23 etpu/ ethenb vss ovdd ovdd ovdd ovdd ovdd ovdd vss sd_cs0 sd_ sras sd_ scas clkout m n d19 d20 d13 d9 nc d3 d0 tsiz1 irq5 irq1 trst / dsclk pst0 jtag_ en ddata3 sd_cs1 vss n p d17 d18 d12 d8 d5 d2 dt1in tsiz0 irq4 dt2in tms/ bkpt pst1 rcon ddata2 vddpll extal p r d16 d15 d11 d7 d4 d1 dt1out irq7 irq3 dt2out tdo/ dso pst2 ddata0 pll_ test vsspll xtal r t vss d14 d10 d6 vdd vss oe irq6 irq2 tclk/ pstclk tdi/dsi pst3 ddata1 rstout reset vss t 12345678910111213141516
mechanicals/pi nouts and part numbers MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 31 5.2.2 package dimensions?256 mapbga figure 7 shows mcf5235cvmxxx, mcf 5234cvmxxx, and mcf5233cvmxx package dimensions. figure 7. 256 mapbga package outline x y d e laser mark for pin a1 identification in this area 0.20 metalized mark for pin a1 identification in this area m m 3 a b c d e f g h j k l m n p r t 1 2 3 4 5 6 7 10 11 12 13 14 15 16 e 15x e 15x b 256x m 0.25 y z m 0.10 x z s detail k view m-m rotated 90 clockwise s a z z a2 a1 4 0.15 z 0.30 256x 5 k notes: 1. dimensions are in millimeters. 2. interpret dimensions and tolerances per asme y14.5m, 1994. 3. dimension b is measured at the maximum solder ball diameter, parallel to datum plane z. 4. datum z (seating plane) is defined by the spherical crowns of the solder balls. 5. parallelism measurement shall exclude any effect of mark on top surface of package. dim min max millimeters a 1.25 1.60 a1 0.27 0.47 a2 1.16 ref b 0.40 0.60 d 17.00 bsc e 17.00 bsc e 1.00 bsc s 0.50 bsc
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary mechanicals/pinouts and part numbers freescale semiconductor 32 5.3 pinout?160 qfp figure 8 shows a pinout of the mcf5232cabxxx package. figure 8. mcf5232cabxxx pinout (160 qfp) 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 vss tpuch7 tpuch6 tpuch5 tpuch4 tpuch3 tpuch2 vss tpuch1 tpuch0 qspi_dout qspi_din qspi_clk qspi_cs0 ovdd vss\ovss vdd bs3 bs2 bs1 bs0 sd_cke\qspi_cs1 ovdd vss u1rxd\can0rx u1txd\can0tx cs3 cs2 ovdd vss cs1 cs0 ovdd vss a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 ovdd vss a11 a10 a9 a8 a7 a6 a5 ovdd vss/ovss vdd a4 a3 a2 a1 a0 ta r/w ovdd vss sd_we sd_scas sd_sras ovdd clkout vss vddpll extal xtal vsspll reset rstout /pll_test ovdd a23 ovdd tpuch8 tpuch9 tpuch10 tpuch11 tpuch12 tpuch13 vss ovdd tpuch14 tpuch15 tcrclk u0rxd u0txd vdd vss ovdd test clkmod1 clkmod0 d31 d30 d29 d28 vss d27 d26 d25 d24 d23 vss ovdd d22 d21 d20 d19 d18 d17 d16 vss ovdd d15 d14 d13 d12 d11 d10 d9 d8 d7 d6 d5 vdd vss\ovss ovdd d4 d3 d2 d1 d0 vss ovdd oe irq7 irq4 irq1 vss tclk\pstclk ovdd trst \dsclk tms\bkpt tdo/dso tdi/dsi pst0 pst1 pst2 pst3 jtag_en rcon vss mcf5232
mechanicals/pi nouts and part numbers MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 33 5.4 package dimensions?160 qfp figure 9 shows mcf5232cab80 package dimensions. figure 9. 160 qfp package dimensions top & bottom case 864a-03 d n f j base metal section b?b detail c s s ?c? e c m u w k x q r t h ?h? b ?a?, ?b?, ?d? b detail a g p s s s s s s a s l z l y detail a b v ?a? ?b? ?h? detail c millimeters inches dim min max min max a b c d e f g h j k l m n p q r t u v w x y z 27.90 28.10 1.098 1.106 27.90 28.10 1.098 1.106 3.35 3.85 0.132 1.106 3.35 3.85 0.009 0.015 0.22 0.38 0.009 0.013 0.22 0.33 0.126 0.138 3.20 3.50 0.65 bsc 0.026 ref 0.010 0.014 0.25 0.35 0.004 0.009 0.11 0.23 0.028 0.035 0.70 0.90 25.35 bsc 0.998 ref 5 16 5 16 0.004 0.007 0.11 0.19 0.325 bsc 0.013 ref 0 7 0 7 0.005 0.012 0.13 0.30 0.005 ? 0.13 ? 0 ?0 ? 31.00 31.40 1.220 1.236 s 31.00 31.40 1.220 1.236 0.016 ? 0.4 ? 1.60 ref 0.063 ref 1.33 ref 0.052 ref 1.33 ref 0.052 ref notes 1. dimensioning and tolerincing per ansi y14.5m, 1982. 2. controlling dimension: millimeter 3. datum plan -h- is located at bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line. 4. datums -a-, -b-, and -d- to be determined at datum plane -h-. 5. dimensions s and v to be determined at seating plane -c-. 6. dimensions a and b do not include mold protrusion. allowable protrusion is 0.25 (0.010) per side. dimensions a and b do include mold mismatch and are determined at datum plane -h-. 7. dimension d does not include dambar protrusion. allowable dambar protrusion shall be 0.08 (0.003) total in excess of the d dimension at maximum material condition. dambar cannot be located on the lower radius or the foot. 0.110 (0.004) a-b d c 0.13 (0.005) m 0.20 (0.008) a-b d c m m 0.20 (0.008) a-b 0.20 (0.008) a-b d c s s m m h a-b d h a-b d 0.20 (0.008) 0.20 (0.008) 0.20 (0.008) a-b
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 34 5.5 ordering information 6 preliminary electrical characteristics this chapter contains electrical specification tabl es and reference timing diagrams for the mcf5235 microcontroller unit. this section contains deta iled information on power considerations, dc/ac electrical characteristi cs, and ac timing spec ifications of mcf5235. the electrical specifications are preliminary and are from previous designs or design simulations. these specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon these specificat ions will be met. finalized speci fications will be published after complete characterization and device qualifications have been completed. note the parameters specified in this pr ocessor document supersede any values found in the module specifications. 6.1 maximum ratings table 25. orderable part numbers freescale part number description speed temperature mcf5232cab80 mcf5232 risc microprocessor, 160 qfp 80mhz ?40 to +85 c mcf5232cvm100 mcf5232 risc microprocessor, 196 mapbga 100mhz ?40 to +85 c mcf5232cvm150 mcf5232 risc microprocessor, 196 mapbga 150mhz ?40 to +85 c mcf5233cvm100 mcf5233 risc microprocessor, 256 mapbga 100mhz ?40 to +85 c mcf5233cvm150 mcf5233 risc microprocessor, 256 mapbga 150mhz ?40 to +85 c mcf5234cvm100 mcf5234 risc microprocessor, 256 mapbga 100mhz ?40 to +85 c mcf5234cvm150 mcf5234 risc microprocessor, 256 mapbga 150mhz ?40 to +85 c mcf5235cvm100 mcf5235 risc microprocessor, 256 mapbga 100mhz ?40 to +85 c mcf5235cvm150 mcf5235 risc microprocessor, 256 mapbga 150mhz ?40 to +85 c table 26. absolute maximum ratings 1, 2 rating symbol value unit core supply voltage v dd ? 0.5 to +2.0 v pad supply voltage ov dd ? 0.3 to +4.0 v clock synthesizer supply voltage v ddpll ? 0.3 to +4.0 v digital input voltage 3 v in ? 0.3 to + 4.0 v
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 35 6.2 thermal characteristics table 27 lists thermal resistance values instantaneous maximum current single pin limit (applies to all pins) 3,4,5 i d 25 ma operating temperatur e range (packaged) t a (t l - t h ) ? 40 to 85 c storage temperature range t stg ? 65 to 150 c notes: 1 functional operating conditions are given in dc electrical specifications. absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. continued operation at these levels may affect device reliability or cause permanent damage to the device. 2 this device contains circuitry protecting a gainst damage due to high static voltage or electrical fields; however, it is advised that no rmal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either v ss or ov dd ). 3 input must be current limited to the value spec ified. to determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values. 4 all functional non-supply pins are internally clamped to v ss and ov dd . 5 power supply must maintain regulation within operating ov dd range during instantaneous and operating maximum current conditions. if positive injection current (v in > ov dd ) is greater than i dd , the injection current may flow out of ov dd and could result in external power supply going out of regulation . insure external ov dd load will shunt current greater than maximum injection current. this will be the greatest risk when the processor is not consuming power (ex; no clock).power supply must maintain regulation within operating ov dd range during instantaneous and operating maximum current conditions. table 27. thermal characteristics characteristic symbol 256 mapbga 196 mapbga 160qfp unit junction to ambient, natural convection four layer board (2s2p) jma 26 1,2 32 3,4 40 5,6 c / w junction to ambient (@200 ft/min) four layer board (2s2p) jma 23 5 , 6 29 5 , 6 36 5 , 6 c / w junction to board jb 15 7 20 8 25 9 c / w junction to case jc 10 10 10 11 10 12 c / w junction to top of package jt 2 5 ,13 2 5 ,14 2 5 ,15 c / w maximum operating junction temperature t j tbd tbd tbd o c table 26. absolute maximum ratings 1, 2 rating symbol value unit
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 36 notes: 1 jma and jt parameters are simulated in conformance with eia/j esd standard 51-2 for natural convection. freescale recommends the use of jma and power dissipation specif ications in the system design to prevent device junction temperatures from exceeding the rate d specification. system designers sh ould be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. conformance to the device junction temperature specification c an be verified by physical measurement in the customer?s system using the jt parameter, the device power dissipation, and th e method described in eia/jesd standard 51-2. 2 per jedec jesd51-6 with the board horizontal. 3 jma and jt parameters are simulated in conformance with eia/j esd standard 51-2 for natural convection. freescale recommends the use of jma and power dissipation specif ications in the system design to prevent device junction temperatures from exceeding the rate d specification. system designers sh ould be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. conformance to the device junction temperature specification c an be verified by physical measurement in the customer?s system using the jt parameter, the device power dissipation, and th e method described in eia/jesd standard 51-2. 4 per jedec jesd51-6 with the board horizontal. 5 jma and jt parameters are simulated in conformance with eia/j esd standard 51-2 for natural convection. freescale recommends the use of jma and power dissipation specif ications in the system design to prevent device junction temperatures from exceeding the rate d specification. system designers sh ould be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. conformance to the device junction temperature specification c an be verified by physical measurement in the customer?s system using the jt parameter, the device power dissipation, and th e method described in eia/jesd standard 51-2. 6 per jedec jesd51-6 with the board horizontal. 7 thermal resistance between the die and the printed ci rcuit board in conformance with jedec jesd51-8. board temperature is measured on the top surface of the board near the package. 8 thermal resistance between the die and the printed ci rcuit board in conformance with jedec jesd51-8. board temperature is measured on the top surface of the board near the package. 9 thermal resistance between the die and the printed ci rcuit board in conformance with jedec jesd51-8. board temperature is measured on the top surface of the board near the package. 10 thermal resistance between the die and the case top surfac e as measured by the cold plate method (mil spec-883 method 1012.1). 11 thermal resistance between the die and the case top surfac e as measured by the cold plate method (mil spec-883 method 1012.1). 12 thermal resistance between the die and the case top surfac e as measured by the cold plate method (mil spec-883 method 1012.1). 13 thermal characterization parameter indicating the temperature difference between package top and the junction temperature per jedec jesd51-2. when greek letters are not available, the thermal characterization parameter is written in conformance with psi-jt. 14 thermal characterization parameter indicating the temperature difference between package top and the junction temperature per jedec jesd51-2. when greek letters are not available, the thermal characterization parameter is written in conformance with psi-jt. 15 thermal characterization parameter indicating the temperature difference between package top and the junction temperature per jedec jesd51-2. when greek letters are not available, the thermal characterization parameter is written in conformance with psi-jt. the average chip-junction temperature (t j ) in c can be obtained from: (1) where: t a = ambient temperature, c jma = package thermal resistance, junction-to-ambient, c/w p d = p int + p i/o p int = i dd v dd , watts - chip internal power t j t a p d jma () + =
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 37 6.3 dc electrical specifications p i/o = power dissipation on input and output pins ? user determined for most applications p i/o < p int and can be ignored. an appr oximate relations hip between p d and t j (if p i/o is neglected) is: (2) solving equations 1 and 2 for k gives: k = p d (t a + 273 c) + jma p d 2 (3) where k is a constant pertaining to the particular part. k can be determined from equation (3) by measuring p d (at equilibrium) for a known t a . using this value of k, the values of p d and t j can be obtained by solving equations (1) and (2) iteratively for any value of t a . table 28. dc electrical specifications 1 characteristic symbol min max unit core supply voltage v dd 1.35 1.65 v pad supply voltage ov dd 33.6v input high voltage v ih 0.7 ov dd 3.65 v input low voltage v il v ss ? 0.3 0.35 ov dd v input hysteresis v hys 0.06 ov dd ?mv input leakage current v in = v dd or v ss , input-only pins i in ?1.0 1.0 a high impedance (off-sta te) leakage current v in = v dd or v ss , all input/output and output pins i oz ?1.0 1.0 a output high voltage (all inpu t/output and all output pins) i oh = ?5.0 ma v oh ov dd - 0.5 __ v output low voltage (all input/ output and all output pins) i ol = 5.0ma v ol __ 0.5 v weak internal pull up devi ce current, tested at v il max. 2 i apu ?10 ? 130 a input capacitance 3 all input-only pins all input/output (three-state) pins c in ? ? 7 7 pf p d kt j 273 c + () =
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 38 6.4 oscillator and pllmrfm electrical characteristics load capacitance 4 low drive strength high drive strength c l 25 50 pf core operating supply current 5 master mode i dd ?tbdma pad operating supply current master mode low power modes oi dd ? ? tbd tbd ma a dc injection current 3, 6, 7, 8 v negclamp =v ss ? 0.3 v, v posclamp = v dd + 0.3 single pin limit total processor limit, includes sum of all stressed pins i ic ?1.0 ?10 1.0 10 ma notes: 1 refer to table 29 for additional pll specifications. 2 refer to the mcf5235 signals section for pins having weak internal pull-up devices. 3 this parameter is characterized before qualification rather than 100% tested. 4 pf load ratings are based on dc loading and are provided as an indication of driver str ength. high speed interfaces require transmission line analysis to determine proper drive strength and termination. see high speed signal propagation: advanced black magic by howard w. johnson for design guidelines. 5 current measured at maximum system clock frequency, all modules active, and default drive strength with matching load. 6 all functional non-supply pins are internally clamped to v ss and their respective v dd . 7 input must be current limited to the va lue specified. to determine the value of the required curren t-limiting resistor, calculate resistance values for positive and negative cl amp voltages, then use the larger of the two values. 8 power supply must maintain regulation within operating v dd range during instantaneous and operating maximum current conditions. if posi tive injection current (v in > v dd ) is greater than i dd , the injection current may flow out of v dd and could result in external power supply going out of regulation. insure external v dd load will shunt current greater than maximum injection current. this will be the greatest risk when the processor is not consuming power. examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. also, at power-up, system clock is not present during the po wer-up sequence until the pll has attained lock. table 29. hip7 pllmrfm electrical specifications 1 num characteristic symbol min. value max. value unit 1 pll reference frequency range crystal reference external reference 1:1 mode (note: f sys/2 = 2 f ref_1:1 ) f ref_crystal f ref_ext f ref_1:1 8 8 24 25 25 75 mhz 2 core frequency clkout frequency 2 external reference on-chip pll frequency f sys f sys/2 0 f ref 32 150 75 75 mhz mhz mhz 3 loss of reference frequency 3, 5 f lor 100 1000 khz 4 self clocked mode frequency 4, 5 f scm tbd tbd mhz table 28. dc electrical specifications 1 characteristic symbol min max unit
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 39 5 crystal start-up time 5, 6 t cst ?10ms 6 extal input high voltage crystal mode 7 all other modes (dual controller (1:1), bypass, external) v ihext v ihext tbd tbd tbd tbd v v 7 extal input low voltage crystal mode 7 all other modes (dual controller (1:1), bypass, external) v ilext v ilext tbd tbd tbd tbd v v 8 xtal output high voltage i oh = 1.0 ma v oh tbd ? v 9 xtal output low voltage i ol = 1.0 ma v ol ?tbdv 10 xtal load capacitance 5 530pf 11 pll lock time 5, 8,14 t lpll ?750 s 12 power-up to lock time 5, 6,9 with crystal reference (includes 5 time) without crystal reference 10 t lplk ? ? 11 750 ms s 13 1:1 mode clock skew (between clkout and extal) 11 t skew ?1 1 ns 14 duty cycle of reference 5 t dc 40 60 % 15 frequency un-lock range f ul ?3.8 4.1 % f sys/2 16 frequency lock range f lck ?1.7 2.0 % f sys/2 17 clkout period jitter, 5, 6, 9,12, 13 measured at f sys/2 max peak-to-peak jitter (clock edge to clock edge) long term jitter (averaged over 2 ms interval) c jitter ? ? 5.0 .01 % f sys/2 18 frequency modulation range limit 14 , 15 (f sys/2 max must not be exceeded) c mod 0.8 2.2 %f sys/2 19 ico frequency. f ico = f ref * 2 * (mfd+2) 16 f ico 48 75 mhz notes: 1 all values given are initial design targets and subject to change. 2 all internal registers retain data at 0 hz. 3 ?loss of reference frequency? is the reference fre quency detected internally, which transitions the pll into self clocked mode. 4 self clocked mode frequency is the frequency that th e pll operates at when the reference frequency falls below f lor with default mfd/rfd settings. 5 this parameter is guaranteed by characteriza tion before qualification rather than 100% tested. 6 proper pc board layout procedures must be followed to achieve specifications. 7 this parameter is guaranteed by design rather than 100% tested. table 29. hip7 pllmrfm electrical specifications 1 num characteristic symbol min. value max. value unit
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 40 6.5 external interface timing characteristics table 30 lists processor bus input timings. note all processor bus timings are synchr onous; that is, input setup/hold and output delay with respect to the ri sing edge of a reference clock. the reference clock is the clkout output. all other timing relationships ca n be derived fro m these values. 8 this specification applies to the period required for the pll to relock after changing the mfd frequency control bits in the synthesiz er control register (syncr). 9 assuming a reference is available at power up , lock time is measured from the time v dd and v ddsyn are valid to rstout negating. if the crystal oscillator is being us ed as the reference for the pll, then the crystal start up time must be added to the pll lock time to determine the total start-up time. 10 t lpll = (64 * 4 * 5 + 5 ) t ref , where t ref = 1/f ref_crystal = 1/f ref_ext = 1/f ref_1:1 , and = 1.57x10 -6 2(mfd + 2). 11 pll is operating in 1:1 pll mode. 12 jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f sys/2 . measurements are made with the device po wered by filtered supplies and clocked by a stable external clock signal. noise injected into the pll circuitry via v ddsyn and v sssyn and variation in crystal oscillator frequency increase the cjitter percentage for a given interval. 13 values are with frequency modulation disabled. if frequency modulation is enabled, jitter is the sum of cjitter+cmod. 14 modulation percentage applies over an interval of 10 s, or equivalently the modulation rate is 100khz. 15 modulation rate selected must not result in f sys/2 value greater than the f sys/2 maximum specified value. modulation range determined by hardware design. 16 f sys/2 = f ico / (2 * 2 rfd ) table 30. processor bus input timing specifications name characteristic 1 notes: 1 timing specifications are tested using full drive st rength pad configurations in a 50ohm transmission line environment.. symbol min max unit freq system bus frequency f sys/2 50 50 mhz b0 clkout period t cyc 1/50 ns control inputs b1a control input valid to clkout high 2 2 tea and ta pins are being referred to as control inputs. t cvch 9?ns b1b bkpt valid to clkout high 3 3 refer to figure a-19. t bkvch 9?ns b2a clkout high to control inputs invalid 2 t chcii 0?ns b2b clkout high to asynch ronous cont rol input bkpt invalid 3 t bknch 0?ns data inputs b4 data input (d[31:0]) valid to clkout high t divch 4?ns b5 clkout high to data input (d[31:0]) invalid t chdii 0?ns
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 41 timings listed in table 30 are shown in figure 10 & figure a-3. figure 10. general input timing requirements 6.6 processor bus output timing specifications table 31 lists processor bus output timings. table 31. external bus output timing specifications name characteristic symbol min max unit control outputs b6a clkout high to chip selects valid 1 t chcv ?0.5t cyc +5 ns b6b clkout high to byte enables (bs [3:0]) valid 2 t chbv ?0.5t cyc +5 ns b6c clkout high to output enable (oe ) valid 3 t chov ?0.5t cyc +5 ns b7 clkout high to control output (bs [3:0], oe ) invalid t chcoi 0.5t cyc +1.5 ? ns b7a clkout high to chip selects invalid t chci 0.5t cyc +1.5 ? ns invalid invalid clkout(75mhz) t setup t hold input setup and hold 1.5v trise v h = v ih v l = v il 1.5v 1.5v valid tfall v h = v ih v l = v il input rise time input fall time * the timings are also valid for inputs sampled on the negative clock edge. inputs clkout b4 b5
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 42 read/write bus timings listed in table 31 are shown in figure 11 , figure 12 , and figure 13 . address and attribute outputs b8 clkout high to address (a[23:0]) and control (ts , tsiz [1:0], tip , r/w) valid t chav ?9ns b9 clkout high to address (a[23:0]) and control (ts , tsiz [1:0], tip , r/w) invalid t chai 1.5 ? ns data outputs b11 clkout high to data output (d[31:0]) valid t chdov ?9ns b12 clkout high to data output (d[31:0]) invalid t chdoi 1.5 ? ns b13 clkout high to data output (d[31:0]) high impedance t chdoz ?9ns notes: 1 cs transitions after the falling edge of clkout. 2 bs transitions after the falling edge of clkout. 3 oe transitions after the falling edge of clkout. table 31. external bus output timing specifications (continued) name characteristic symbol min max unit
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 43 figure 11. read/write (internally terminated) sram bus timing b12 b13 b8 clkout csn a[23:0] r/w bs [3:0] d[31:0] ta (h) (h) s0 s2 s3 s1 s4 s5 s0 s1 s2 s3 s4 s5 tea (h) b6a b8 b7a b6c b7 b6b b7 b4 b5 b11 b9 b9 b6b oe b0 b7 b9 ts tip b8 b8 b9 b8 b9 tsiz [1:0] b7a b6a b8
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 44 figure 12 shows a bus cycle terminated by ta showing timings listed in table 31 . figure 12. sram read bus cycle terminated by ta figure 13 shows an sram bus cycle terminated by tea showing timings listed in table 31 . b8 b9 b6a clkout csn a[23:0] oe r/w bs [3:0] ta (h) s0 s2 s3 s1 s4 s5 s0 s1 tea (h) b8 b7a b9 b6c b7 b6b b7 b2a b1a d[31:0] b4 b5 b8 ts b9 tip tsiz[ 1:0]
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 45 figure 13. sram read bus cycle terminated by tea figure 14 shows an sdram read cycle. clkout csn a[23:0] oe r/w bs [3:0] tea (h) s0 s2 s3 s1 s4 s5 s0 s1 ta (h) b6a b8 b7a b9 b6c b7 b6b b7 b2a b1a d[31:0] b8 b9 ts b9 tip b8 tsiz[ 1:0]
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 46 figure 14. sdram read cycle figure 15 shows an sdram write cycle. table 32. sdram timing num characteristic symbol min max unit d1 clkout high to sdram address valid t chdav ?9ns d2 clkout high to sdram control valid t chdcv ?9ns d3 clkout high to sdram address invalid t chdai 1.5 ? ns d4 clkout high to sdram control invalid t chdci 1.5 ? ns d5 sdram data valid to clkout high t ddvch 4?ns d6 clkout high to sdram data invalid t chddi 1.5 ? ns d7 1 notes: 1 d7 and d8 are fo r write cycles only. clkout high to sdram data valid t chddvw ?9ns d8 2 clkout high to sdram data invalid t chddiw 1.5 ? ns a[23:0] ras d[31:0] actv nop pall nop ras [1:0] read column sd_cke 0 sdwe cas [3:0] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 d1 d2 d4 d6 d5 d4 d4 1 dacr[casl] = 2 cas 1 nop d4 row d3 d2 d2 d2 d2
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 47 figure 15. sdram write cycle 6.7 general purpose i/o timing table 33. gpio timing 1 notes: 1 gpio pins include: int, etpu, uart, flexcan and timer pins. num characteristic symbol min max unit g1 g2 clkout high to gpio output valid t chpov ?10ns clkout high to gpio output invalid t chpoi 1.5 ? ns g3 g4 gpio input valid to clkout high t pvch 9?ns clkout high to gpio input invalid t chpi 1.5 ? ns a[23:0] sd_sras sd_scas 1 d[31:0] actv pall nop ras [1:0] write row column sd_cke sd_we cas [3:0] d1 d2 d4 d8 0 1 2 3 4 5 6 7 8 9 10 11 12 d7 nop 1 dacr[casl] = 2 d4 d3 d2 d2 d2 d4 d2
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 48 figure 16. gpio timing 6.8 reset and configurat ion override timing table 34. reset and configuration override timing (v dd = 2.7 to 3.6 v, v ss = 0 v, t a = t l to t h ) 1 notes: 1 all ac timing is shown with respect to 50% v dd levels unless otherwise noted. num characteristic symbol min max unit r1 reset input valid to clkout high t rvch 9?ns r2 clkout high to reset input invalid t chri 1.5 ? ns r3 reset input valid time 2 2 during low power stop, the synchronizers for the reset input are bypassed and reset is asserted asynchronously to the system. thus, reset must be held a minimum of 100 ns. t rivt 5?t cyc r4 clkout high to rstout valid t chrov ?10ns r5 rstout valid to config. overrides valid t rovcv 0?ns r6 configuration override setup time to rstout invalid t cos 20 ? t cyc r7 configuration override hold time after rstout invalid t coh 0?ns r8 rstout invalid to configuration override high impedance t roicz ?1t cyc g1 clkout gpio outputs g2 g3 g4 gpio inputs
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 49 figure 17. reset and configuration override timing * refer to the coldfire integration m odule (cim) section for more information. 6.9 i 2 c input/output timing specifications table 35 lists specifications for the i 2 c input timing parameters shown in figure 18 . table 36 lists specifications for the i 2 c output timing parameters shown in figure 18 . table 35. i 2 c input timing specifications between i2c_scl and i2c_sda num characteristic min max units i1 start condition hold time 2 ? t cyc i2 clock low period 8 ? t cyc i3 i2c_scl/i2c_sda rise time (v il = 0.5 v to v ih =2.4 v) ? 1 ms i4 data hold time 0 ? ns i5 i2c_scl/i2c_sda fall time (v ih = 2.4 v to v il = 0.5 v) ? 1 ms i6 clock high time 4 ? t cyc i7 data setup time 0 ? ns i8 start condition setup time (for repeated start condition only) 2 ? t cyc i9 stop condition setup time 2 ? t cyc table 36. i 2 c output timing specifications between i2c_scl and i2c_sda num characteristic min max units i1 1 start condition hold time 6 ? t cyc i2 1 clock low period 10 ? t cyc i3 2 i2c_scl/i2c_sda rise time (v il = 0.5 v to v ih = 2.4 v) ?? s i4 1 data hold time 7 ? t cyc i5 3 i2c_scl/i2c_sda fall time (v ih = 2.4 v to v il =0.5 v) ?3 ns i6 1 clock high time 10 ? t cyc r1 r2 clkout reset rstout r3 r4 r8 r7 r6 r5 configuration overrides*: r4 (rcon , override pins])
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 50 figure 18 shows timing for the values in table 35 and table 36 . figure 18. i 2 c input/output timings 6.10 fast ethernet ac timing specifications mii signals use ttl signal levels compatible with devices operating at either 5.0 v or 3.3 v. 6.10.1 mii receive signal timing (erxd[3:0], erxdv, erxer, and erxclk) the receiver functions correctly up to a erxclk maximum frequency of 25 mhz +1%. there is no minimum frequency requirement. in addition, the pr ocessor clock frequency must exceed twice the erxclk frequency. table 37 lists mii receive channel timings. i7 1 data setup time 2 ? t cyc i8 1 start condition setup time (for repeated start condition only) 20 ? t cyc i9 1 stop condition setup time 10 ? t cyc notes: 1 note: output numbers depend on the value programmed into the ifdr; an ifdr programmed with the maximum frequency (ifdr = 0x20) results in minimum output timings as shown in ta bl e 3 6 . the i 2 c interface is designed to scale the actual data transition time to move it to the middle of the i2c_scl low period. the actual position is affected by the prescale and division val ues programmed into the ifdr; however, the numbers given in ta b l e 3 6 are minimum values. 2 because i2c_scl and i2c_sda are open-collect or-type outputs, which the processor can only actively drive low, the time i2c_scl or i2c_sda take to reach a high level depends on external signal capacitance and pull-up resistor values. 3 specified at a nominal 50-pf load. table 36. i 2 c output timing specifications between i2c_scl and i2c_sda num characteristic min max units i2 i6 i1 i4 i7 i8 i9 i5 i3 i2c_scl i2c_sda
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 51 figure 19 shows mii receive sign al timings listed in table 37 . figure 19. mii receive signal timing diagram 6.10.2 mii transmit signal timing (etxd[3:0], etxen, etxer, etxclk) table 38 lists mii transmit channel timings. the transmitter functions correctly up to a etxc lk maximum frequency of 25 mhz +1%. there is no minimum frequency requirement. in addition, the pr ocessor clock frequency must exceed twice the etxclk frequency. the transmit outputs (etxd[3:0], etxen, etxer) can be programmed to transition from either the rising or falling edge of etxclk, and the timing is th e same in either case. this options allows the use of non-compliant mii phys. refer to the ethernet chapter for detail s of this option and how to enable it. table 37. mii receive signal timing num characteristic min max unit m1 erxd[3:0], erxdv, erxer to erxclk setup 5 ? ns m2 erxclk to erxd[3:0], erxdv, erxer hold 5 ? ns m3 erxclk pulse width high 35% 65% erxclk period m4 erxclk pulse width low 35% 65% erxclk period table 38. mii transmit signal timing num characteristic min max unit m5 etxclk to etxd[3:0], etxen, etxer invalid 5 ? ns m6 etxclk to etxd[3:0], etxen, etxer valid ? 25 ns m7 etxclk pulse width high 35% 65% etxclk period m8 etxclk pulse width low 35% 65% etxclk period m1 m2 erxclk (input) erxd[3:0] (inputs) erxdv erxer m3 m4
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 52 figure 20 shows mii transmit si gnal timings listed in table 38 . figure 20. mii transmit signal timing diagram 6.10.3 mii async inputs signal timing (ecrs and ecol) table 39 lists mii asynchronous inputs signal timing. figure 21 shows mii asynchronous i nput timings listed in table 39 . figure 21. mii async inputs timing diagram 6.10.4 mii serial management channel timing (emdio and emdc) table 40 lists mii serial management channel timings. the fec functio ns correctly with a maximum mdc frequency of 2.5 mhz. table 39. mii async inputs signal timing num characteristic min max unit m9 ecrs, ecol minimum pulse width 1.5 ? etxclk period table 40. mii serial management channel timing num characteristic min max unit m10 emdc falling edge to emdio output invalid (minimum propagation delay) 0? ns m11 emdc falling edge to emdio output valid (max prop delay) ? 25 ns m12 emdio (input) to emdc rising edge setup 10 ? ns m13 emdio (input) to emdc rising edge hold 0 ? ns m14 emdc pulse width high 40% 60% mdc period m15 emdc pulse width low 40% 60% mdc period m6 etxclk (input) etxd[3:0] (outputs) etxen etxer m5 m7 m8 ecrs, ecol m9
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 53 figure 22 shows mii serial management channel timings listed in table 40 . figure 22. mii serial management channel timing diagram 6.11 32-bit timer module ac timing specifications table 41 lists timer module ac timings. 6.12 qspi electrical specifications table 42 lists qspi timings. table 41. timer module ac timing specifications name characteristic 0?66 mhz unit min max t1 dt0in / dt1in / dt2in / dt3in cycle time 3 ? t cyc t2 dt0in / dt1in / dt2in / dt3in pulse width 1 ? t cyc table 42. qspi modules ac timing specifications name characteristic min max unit qs1 qspi_cs[1:0] to qspi_clk 1 510 tcyc qs2 qspi_clk high to qspi_dout valid. ? 10 ns qs3 qspi_clk high to qspi_dout invalid. (output hold) 2 ? ns qs4 qspi_din to qspi_clk (input setup) 9 ? ns qs5 qspi_din to qspi_clk (input hold) 9 ? ns m11 emdc (output) emdio (output) m12 m13 emdio (input) m10 m14 m15
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 54 the values in table 42 correspond to figure 23 . figure 23. qspi timing 6.13 jtag and boundary scan timing table 43. jtag and boundary scan timing num characteristics 1 notes: 1 jtag_en is expected to be a static signal. henc e, specific timing is not associated with it. symbol min max unit j1 tclk frequency of operation f jcyc dc 1/4 f sys/2 j2 tclk cycle period t jcyc 4- t cyc j3 tclk clock pulse width t jcw 26 - ns j4 tclk rise and fall times t jcrf 03 ns j5 boundary scan input data setup time to tclk rise t bsdst 4- ns j6 boundary scan input data hold time after tclk rise t bsdht 26 - ns j7 tclk low to boundary scan output data valid t bsdv 033 ns j8 tclk low to boundary scan output high z t bsdz 033 ns j9 tms, tdi input data setup time to tclk rise t tapbst 4- ns j10 tms, tdi input data hold time after tclk rise t tapbht 10 - ns j11 tclk low to tdo data valid t tdodv 026 ns j12 tclk low to tdo high z t tdodz 08 ns j13 trst assert time t trstat 100 - ns j14 trst setup time (negation) to tclk high t trstst 10 - ns qspi_cs[1:0] qspi_clk qspi_dout qs5 qs1 qspi_din qs3 qs4 qs2
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 55 figure 24. test clock input timing figure 25. boundary scan (jtag) timing tclk v il v ih j3 j3 j4 j4 j2 (input) input data valid output data valid output data valid tclk data inputs data outputs data outputs data outputs v il v ih j5 j6 j7 j8 j7
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary preliminary electrical characteristics freescale semiconductor 56 figure 26. test access port timing figure 27. trst timing 6.14 debug ac timing specifications table 44 lists specifications for the de bug ac timing parameters shown in figure 29 . table 44. debug ac timing specification num characteristic 150 mhz units min max de0 pstclk cycle time 0.5 t cyc de1 pst valid to pstclk high 4 ns de2 pstclk high to pst invalid 1.5 ns de3 dsclk cycle time 5 t cyc de4 dsi valid to dsclk high 1 t cyc input data valid output data valid output data valid tclk tdi tdo tdo tdo tms v il v ih j9 j10 j11 j12 j11 tclk trst j14 j13
preliminary electrica l characteristics MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 57 figure 28 shows real-time trace timing for the values in table 44 . figure 28. real-time trace ac timing figure 29 shows bdm serial port ac timing for the values in table 44 . figure 29. bdm serial port ac timing de5 1 dsclk high to dso invalid 4 t cyc de6 bkpt input data setup time to clkout rise 4ns de7 clkout high to bkpt high z 0 10 ns notes: 1 dsclk and dsi are synchronized internally. d4 is measured from the synchronized dsclk input relative to the rising edge of clkout. table 44. debug ac timing specification num characteristic 150 mhz units min max pstclk pst[3:0] de2 de1 ddata[3:0] de0 dsi dso current next clkout past current dsclk de3 de4 de5 bkpt de6 de7
MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary documentation freescale semiconductor 58 7 documentation table 46 lists the documents that provide a complete description of the mcf523 x and their development support tools. documentation is av ailable from a local fr eescale distributor, a freescale semiconductor sales office, the freescale literatu re distribution ce nter, or through the freescal e world-wide web address at http://www.freescale.com . 7.1 document revision history table 46 provides a revision history for this document. table 45. mcf523 x documentation freescale document number title revision status mcf5235ec mcf5235 risc microprocessor hardware specifications rev. 1.3 this document mcf5235rm MCF523X reference manual 1 available mcf5235pb MCF523X product brief 0 available MCF523Xfs MCF523X fact sheet ? in process etpurm/d etpu user manual 0 available cfprodfact/d the coldfire fami ly of 32-bit microprocessors family overview and technology roadmap 0 available under nda mcf5xxxwp mcf5xxxwp white paper: motorola coldfire vl risc processors 0 available under nda mapbgapp mapbga 4-layer example 0 available cfprm/d coldfire family programmer's reference manual 2 available table 46. document revision history rev. no. substantive change(s) 0 preliminary release. 1 -updated signal list table 1.1 -removed duplicate information in the module description sections. the information is all in the signals description table. 1.2 -corrected figure 8 pin 81. vdd instead of vss -changed instances of motorola to freescale 1.3 -removed detailed signal description section. this information can be found in the mcf5235rm chapter 2. -removed detailed feature list. this information can be found in the mcf5235rm chapter 1. -corrected figure 2 pin f10. vss instead of vdd. change made in ta b l e 2 as well. -corrected figure 8 pin 81. ovdd instead of vdd. change made in ta b l e 2 as well. -cleaned up many inconsistencies wit hin the pinout figure signal names -corrected document ids in ta bl e 4 5
this page intentionally left blank MCF523X integrated microprocessor ha rdware specification, rev. 1.3 preliminary freescale semiconductor 59
mcf5235ec rev. 1.3, 10/2004 how to reach us: usa/europe/locations not listed: freescale semiconductor literature distribution p.o. box 5405, denver, colorado 80217 1-800-521-6274 or 480-768-2130 japan: freescale semiconductor japan ltd. technical information center 3-20-1, minami-azabu, minato-ku tokyo 106-8573, japan 81-3-3440-3569 asia/pacific: freescale semiconductor h.k. ltd. 2 dai king street tai po industrial estate tai po, n.t. hong kong 852-26668334 learn more: for more information about freescale semiconductor products, please visit http://www.freescale.com information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circui ts or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpos e, nor does freescale semiconductor assume any liability arising out of the application or use of any product or ci rcuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters which may be provided in freescale semiconductor data sheets and/or s pecifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale? and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2004.  preliminary


▲Up To Search▲   

 
Price & Availability of MCF523X

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X